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SOLUTION OF A HEAT-CONDUCTION PROBLEM
FOR A FINITE CYLINDER AND SEMISPACE
UNDER MIXED LOCAL BOUNDARY CONDITIONS
IN THE PLANE OF THEIR CONTACT

P. A. Mandrik UDC 517.968,536.24

With the use of the method of summator—integral equations, an axisymmetric problem has been inves-
tigated that deals with the development of spatial temperature fields appearing in a finite cylinder
with an arbitrary distribution of initial temperature when the cylinder comes in contact with a semi-
infinite body that has a congtant initial temperature. The essential feature of the considered thermo-
physical model of heat exchange is that mixed boundary conditions of the second and fourth kind are
assigned in the plane of contact of the finite body with the semispace. The thermophysical properties
of the bodies considered are different.

The formulation of the problem consists of the determination of the laws governing the development
of gpatial nonstationary temperature fields in a semispace and a finite cylinder of radius R and height |, when
one of the end faces of the finite cylinder touches the semispace surface. The thermophysica characteristics
of the bodies considered and their initial temperatures are different and the distribution of the initial tempera-
ture of the cylinder is arbitrary. Outside the circular region of contact on the surface of the semispace and on
the lateral and noncontacting end-face surface of the cylinder there is ideal therma insulation. Thereafter,
when writing down mathematical formulas, the subscript 1 is used for the semispace and 2 for the cylinder.

Let r and z denote cylindrical coordinates, T time, T4(r, z, T) the temperature of the semi-infinite body
(r>0, z<0. 1>0), Ty(r, z 1) the temperature of the cylinder (O<r <R, 0<z<I, 1>0), and A; >0 and
;>0 and A, >0 and a, >0 the thermal conductivity and thermal diffusivity of the semi-infinite body and
cylinder, respectively.

Thus, it is necessary to solve a system of two differential equations of nonstationary heat conduction
(in the corresponding ranges of coordinates)
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and boundary-value conditions
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where K, = )\1/)\2.

We note that, according to [1], expressions (5) and (6) determine the boundary condition of the fourth
kind in the region z = 0, 0<r <R, and the system of expressions (5)—7) determines the mixed boundary
conditions on the surface z = 0 in the corresponding regions of change of the variable r.

To solve the problem formulated, we first apply the Laplace integral transformation (L-transforma:
tion) [2], as a result of which, with account for the initia conditions, the problem at hand in the region of
transforms will be written as
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in which
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and the restriction Re s> 0 on the parameter of Laplace transformation (L-parameter) is omitted for brevity
here and heresfter.
Solution of Eq. (8) under the corresponding conditions from (10) is known [3]:
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Here Jo(pr) is the Bessel function of the first kind and zero order and E(p, s) is the unknown analytical
function.
To solve Eq. (9), we will apply to it the Hankel finite integral transformation [2]
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Then Eg. (9), with account for the corresponding conditions from (10), is transformed into the equation
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in which
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P(p, 9 = VpZ+ &/a,, and pR = p are zeros of the Bessdl function Jy(L).
The solution of differential equation (17) can be easily obtained by the classica method of varying
an arbitrary constant (see, e.g., [14]):
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Here the unknown functions-transforms K,-(p, s) are determined by the boundary condition
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Substituting Eq. (19) into Eg. (20), we obtain the value
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the subgtitution of which into Eqg. (19) allows us to write the following expression:
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The formula of the reversal of the Hankel transform for expression (21) can be written in the form
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in which p,R = |, are the zeros of the Bessdl function Jq(L)-
Expression (21) explicitly yields the following value needed to calculate the Hankd inverse transform

(22):
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which makes it possible, by using notation (21), to write the solution in the region of Laplace transforms for
the finite cylinder as
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in which it is necessary to determine the unknown functions Zz(pn, s) to satisfy the mixed boundary condi-

tions (11)—(13).
Formulas (15) and (23) yield the corresponding expressions
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making it possible to write down the system of equations resulting from the mixed boundary conditions (11)—
(13):
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and, moreover, according to [1], when z = O, the following expression is vaid:

R
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in which f(r, 0) is the value of the initial temperature of the contacting end-face surface of the finite cylinder.
Moreover, it is known (see, eg., [5, p. 634]) that if a certain function d(r, s) is representable, in the
interval 0<r <R, by the Fourier—Dini series
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in which p, are the positive zeros of the Bessel function of the first kind and first order, Ji(M), then the
coefficients of this series are calculated from the formula
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by virtue of the orthogonality of the corresponding functions (see, e.g., [5]), from formula (30) the following
expression can be written for the unknown function:
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the subgtitution of which into Eqg. (24) leads to the formula
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Finally, using, on the right-hand side of Eq. (32), the equality proven in [3]
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In the region R<r <, z = 0 the second integral equation with the L-parameter for finding the un-
known analytical function C(p, s) has the form of Eq. (26):

JCE VI +3 ) pp=0, R<r<e, (39
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To solve the paired integral equations (33), (34) the substitution
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is used, which ensures automatic fulfillment of the second paired equation (34) a any choice of the new
unknown analytical function ¢(t, s) = ¢(-t, s) owing to the value of the corresponding discontinuous integral
(see [3, p. 489]) and from the first paired integral equation (33) provides the integral equation with the L-pa
rameter
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We note that the improper internal integrals on the left-hand side of Eq. (36) converge at any
0<r <R, Re s>0. In particular,
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which allows one, just as in [3], to transform the integral equation (36) as
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If the height of the cylinder | — oo, then Eq. (37) is the basis for determining the unknown auxiliary
function in the case of the model of thermal contact of a semi-infinite cylinder and semispace.

If the radius of the cylinder R - o at a constant height of the cylinder |, i.e,, a model of thermal
contact of an infinitely long plate and semispace is considered, Eq. (37) does not appear, which is natural in
the absence of mixed boundary conditions.

If simultaneously R - o and | - o, we have a modd of thermal contact of two semi-infinite bodies
with different thermophysical properties and different initial temperatures (this case is considered in [1]).

Here, to illustrate the solution of the equations of the type (37) we will consider a smplified model
of heat exchange at f(r, 2) = 0, i.e., when ®(r, s) = 0 in Egs. (33), (36), and (37).

To solve a corresponding equation of the form (37), we replace in it the variable r by p, multiply
both parts of the resulting equation by the integrating factor 2u cos (V(rZ— p?)s/a;) VrZ—p2 and integrate
over u from zero to r. Using the equality
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we obtain an integral equation with the L-parameter written in a standard fashion [see [3]):
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The methods of solution of this equation are considered in [3].

Thus, after determining the function ¢(t, s), from formula (35) we find the unknown | function E(p, ),

the substitution of which into (15) makes it possible to determine the temperature field Ty(r, z ) in the
region of L-transforms for the semispace. Applying the inverse Laplace transform, we find the inverted trans-
form Ty(r, z T1). The temperature field Ty(r, z ) in a finite cylinder is determined by formula (23) with the
use of the value of Ay(Ly/R, s) from (31).

In conclusion, it should be noted that when s — 0 (Tt - ) the analytical results obtained describe

stationary models of contact heat exchange between a finite cylinder and a semi-infinite body.
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